
Security Orchestration Platform
Team: sdmay19-19
Advisor: Doug Jacobson



What is a Red Team/Adversary Simulation?
● Simulate an advanced attack 

against an organization
● Objective-based: “steal credit card 

numbers from PCI network”
● Blue team does not know about the 

red team assessment

https://render.fineartamerica.com/images/rendered/default/poster/8/10/b
reak/images/artworkimages/medium/1/spy-vs-spy-mr-minor.jpg



Problem Statement
● Client faces issues with off the shelf tools being detected during red 

team engagements. Utilize a large number of manual processes which 
could be automated.

● Automation reduces the cost to deliver a red team assessment
● Custom tooling is extensible and is less likely to be detected by 

security solutions which are focused on detecting pre built tools



Conceptual Sketch



HW/SW/Technology Platform(s) used
● Semantic UI Frontend Framework

● Django Web Framework

● Django REST Framework (for APIs)

● Django Channels (for websockets)

● SQLite

● Docker

● C#

● Cuckoo



Functional Requirements

Bot

● Communicates with C2 via an encrypted REST API
● Tested and executable on recent versions of 

Windows
● Able to disconnect from a C2 and shutdown
● Supports domain fronting with Amazon Cloudfront 

and frontable domains
● Demonstrates persistence while remaining stealthy
● EDR solution bypass capabilities

C2

● Communicates over encrypted channel with 
multiple bots

● UI for sending commands to different bots
● Django backend and SemanticUI Frontend
● Multi-user creation/deletion/authentication
● Logs activity by users
● Realtime websockets for receiving data
● Building & configuring of malware
● App deployable with Docker
● Documentation/help for users



Non-Functional Requirements

Bot

● Able to destroy itself upon demand or if it cannot 
locate the C2

● Shall not be noticeable by the average user whose 
system is compromised

● Shall not have predictable network traffic (ie., 
beacon jitter)

● Configurable and supports multiple deployment 
options

● Secure against reverse engineering/losing source 
code/identifying the owner

C2

● Lengthy tasks shall be performed asynchronously
● User shall be able to navigate application freely 

without interrupting any ongoing processes
● Multiple users shall be able to access the 

application simultaneously
● Application shall not be accessible to general public
● Shall be quickly deployable in a temporary state



Project Milestones & Schedule



Project Milestones & Schedule



Functional Decomposition



UI/UX Design Implementation



Custom Frontend Interface

http://www.youtube.com/watch?v=Vrv2x7JujbQ


https://docs.google.com/file/d/16Q57kTOnvgfT-ueeraEnLz7_7fMDdI1I/preview


Interesting Technique - Implant Builder

● Developed a new technique for building implants without recompiling the 
implant binary.

● Problem: Implant needs to be configured to connect to a given C2 server 
without being recompiled. Implant cannot rely on external configuration 
files, etc.

● Solution: Patch a compiled version of the implant at build time with 
configuration information.



Malware Builder

● User runs a separate application in order to patch the binary called the 
malware builder 

● Uses Mono.Cecil to manipulate DotNet Intermediate Language (IL) code in 
order to modify implant configuration options.

● Inserts code into function call in order to return a specified value. In the 
template implant this returned value is blank.



https://docs.google.com/file/d/1UczpbtzY0499a7hCNeJGZNlNSvrk4GwT/preview


Interesting Delivery Mechanism

● Developed mechanism for delivering malware using VBA macros in 
Microsoft Office products.

● Utilizes an egghunter to discover embedded OLE objects within the 
document to get around VBA size limitations.

● Displays decoy document to user when macros are enabled to avoid 
suspicions.



https://docs.google.com/file/d/1uQ9lV9iplKxzYBY9SyBsrzeaNqbWAQ3T/preview


Test Plan
● A curated mixture of automated and manual testing
● Django/Python unit testing for C2
● Cuckoo Sandbox testing for Bot
● Manual integration testing for C2 and Bot
● User-level testing in Amazon’s AWS Cloud Infrastructure with Client



Conclusion

● We demonstrated the product to the client (in-person) and completed all 
deliverables 

● We learned a lot this semester and really enjoyed working with the client
● We hope the client or future senior design groups will be able to expand on 

our project



Future Work - Implement Google BeyondCorp For 
Red Team Infrastructure
● Consider implementing Zero 

Trust/Google BeyondCorp security 
model to protect access to 
client/customer information. 

● Device Authentication (Certificates + 
TPM) + User Authentication (Password 
+ FIDO U2F)

● Put implant server administrative 
interface behind an identity aware 
proxy (e.g. Cloudflare Access, Google 
IDP, etc.) or reverse proxy (e.g. Okta + 
SAML + FIDO U2F authentication)

● Can implement SSH authentication 
using time-limited certificates (e.g. 
https://github.com/Netflix/bless)

https://www.beyondcorp.com/img/no-vpn-s
ecurity-3-full.jpg

https://github.com/Netflix/bless


Future Work - Malleable C2 

● Expand implant for support for 
Malleable C2 mechanisms similar 
to that supported by Cobalt Strike

● Would allow for dynamically 
changing signature of network 
traffic sent by the implant.

https://pbs.twimg.com/media/DKBL76RW4AA7K
8y.jpg


