

Offensive Security Orchestration

Project Management Plan

1

Table of contents
Problem Statement 3

Project Deliverables and Specifications: 4
Deliverables for the Implant Team (C# Back-End) 4
Deliverables for the Command and Control Team (Web App Front-End) 4

Previous Work / Literature Review 5

Proposed Approach 7
Functional requirements 7
Constraints considerations 7
Technology considerations 8
Safety considerations 8
Previous work / literature review 8
Possible risks and risk management 8
Project proposed milestones and evaluation criteria 9

Milestone 1 - MVP 9
Milestone 2 - EDR 9
Milestone 3 - Final Project 9

Project tracking procedures 9
Git Repository 9
Issue Tracker 9

Assessment of Proposed Solution: 11

Project Timeline 15
Fig 1: Gantt Chart for Semester 1 15
Fig 2: Gantt Chart for Semester 2 15

2

Problem Statement

Our project aims to develop a security orchestration platform for our client which will allow them
to conduct red team engagements in a stealth and efficient manner. Since our client often uses
widely deployed and standardized tools during red team engagements they frequently run into
issues with the tools they use being flagged by network security teams. By developing a custom
implant which integrates into the security orchestration platform we will be able to bypass the
tools which flag on more common implants. The other issue our client encounters is that
developing red team processes is a manual and time consuming endeavor. This is a result of
needing to test implants against multiple endpoint detection solutions to see if the implant will be
discovered. To address this issue the security orchestration platform will automate the
deployment of implants so that our client can rapidly develop and test different payloads.

3

Project Deliverables and Specifications:

Deliverables for the Implant Team (C# Back-End)
● Domain Fronting using Amazon Cloudfront
● Macro to deliver payload malware through automated phishing
● Scheduled task persistence while remaining stealthy
● Bypassing endpoint detection and response solutions

Deliverables for the Command and Control Team (Web App Front-End)
● User authentication with multiple levels of access
● Sockets for bi-directional communication between implants and controller
● Encrypted communication (HTTPS)
● Logging of actions taken by every user
● Admin action page for actions such as user management
● Dockerize application to standardize deployment
● Creation of help pages for common actions a user will take
● In-App Malware tester that allows users to quickly test different payloads against EDR

solutions

4

Previous Work / Literature Review
There are a number of industry standard toolkits used for red team engagements. One such
toolkit is the “beacon” payload which is part of the Cobalt Strike framework. The beacon payload
is designed to be an asynchronous agent which can be deployed to a target system in order to
allow for stealthy command and control. The approach used by beacon was innovative
compared to other solutions at the time, such as metasploit's meterpreter, as the asynchronous
nature of the tool allowed for a more stealthy approach to communication. Other tools at the
time were often very noisy in regard to network communication as they would beacon at a
regular interval to a control server at a very fast pace (e.g. beacon once a second at a fixed
interval). This would allow blue teams to detect malware infected systems using techniques
such as discrete fourier transforms, in order to detect a process connecting to a command and
control server at a known interval using tools such as the RITA platform provided by Black Hills
Information Security. Additionally, certain next generation firewall appliances, such as the Palo
Alto Next-Gen Firewall, employ similar tactics which allow for the detection and automatic
blocking of this type of beaconing behavior.

The novel technique used by beacon allowed for asynchronous communication with a
randomized jitter value. The jitter value would randomize the interval used for the connection
which allows for bypassing of tools such as RITA. Additionally, the operator can set the beacon
interval and jitter time to a custom value and the asynchronous control mechanism allowed for
dynamic queueing and un-queueing of pending jobs to perform on an infected system.

The primary problems we have identified with beacon are that due to its widespread use it is
often easily detected. Furthermore, the builtin commands provided by the tool often use
outdated techniques that are easily detected by modern deferenses. Additionally, since the tool
is a closed source solution it is more difficult to customize and “cruel hacks” must be used to
instrument additional functionality on top of a closed source solution.

We have also conducted a review of common frameworks used for automation of red team
quality assurance testing. One such toolkit is the malice tool which is meant to be an open
source alternative to VirusTotal which does not distribute samples. The purpose of the tool is to
test the evasion capabilities of payloads to ensure that red team payloads are not signatured
before being deployed on a target network. This process is normally very manual and can take
a lot of time. This can be very expensive give the high salaries typically paid to red team
operators and the business case for automation quickly becomes apparent.

The malice tool supports a number of static signature scanning techniques, but does not
support dynamic testing or analysis of red team payloads. This is an obvious shortcoming as
modern security tools have moved away from purely static signature checking and have moved
to support behavioral detection techniques.

5

There are also a number of tools which support behavioral analysis, but do not include the static
signature analysis portion that malice does. The Cuckoo Sandbox tool does support dynamic
analysis of payloads, but lacks a number of features included in malice. From our research it
appears like it would be ideal to combine these tools into a unified platform which supports
automated quality assurance of red team payloads.

6

Proposed Approach

Functional requirements
The functional requirements of our system are composed of two primary components that work
both independently and together but supply their own unique functionality. Those components
are the malware (“Bot”) and the command and control frontend (“C2”).

Bot
The malware has the following functional requirements:

● Communicates with C2 via a RESTful API via HTTP
● Is executable on recent versions of Microsoft Windows Operating System
● Provides system info of its infected host
● Can fetch and drop files to the host
● Can exfiltrate data from the host
● Has the ability to alter heartbeat jitter
● Is able to disconnect from a C2 and destroy itself

C2
The command-and-control frontend interface has the following functional requirements:

● Communicates with multiple bots on the same network
● Has a dedicated ReactJS single page application for managing bots
● Uses Django Python Framework to manage APIs and database queries
● Provides a user interface for sending commands to different bots
● Provides documentation and help to the user
● Allows user creation and deletion
● Logs all activity by users
● Has realtime websockets for receiving data from the bots

Constraints considerations
The project and corresponding system will comply with the following constraints:

● The C2 will use ReactJS framework for the user interface SPA
● The C2 backend will use Django
● The C2 will communicate to the bots via REST APIs and be considered “RESTful”
● The EDR solution is restricted to whatever endpoint protection services we are able to

get versions or trials for. Some proprietary/commercial software is hard to obtain legal
licenses for, such as trials.

7

Technology considerations
The malware was continued in C# such that the DotnetToJScript tool could be used to convert
the code in a manner that it could be embedded in Microsoft Office files. This was desired by
the client for use in engagements.

We decided to use ReactJS for the frontend because it allowed us to pursue a
single-page-application, or SPA. An SPA does not require page refreshes as every changing
item is dynamically handled in React’s virtual Document-Object-Model (DOM). An SPA fits
perfectly in with the real-time nature of this project.

Django, a Python Web Framework, is excellent at handling database queries and database
models. Because our application is “data-heavy,” having a tested framework to handle the data
storage is much more stable than directly dealing with SQL or non-SQL-based databases.

8

Assessment of Proposed Solution:

Our proposed solution solves a range of troublesome annoyances that arise during red team
engagements. We offer a way to give red teams a foothold within a secured network using
automated phishing campaigns that distribute macro enabled word documents. This allows a
red team to gain access without needing to conduct extensive, and expensive, reconnaissance
on the target to discover remote vulnerabilities. However our solution is not without it’s strengths
and weaknesses.

One of our biggest strengths is how easy the solution will be to use. It is highly
customizable and easy to learn as a result of being written in a relatively simple programming
language (C#). Furthermore, it is also fully integrated with a web application front end that will
allow users to deploy and manage implants without needing to know exactly how they work.
Also, since one of our main goals is to save time and money on development, and deployment,
we are building the application with automation in mind so that users will have a limited amount
of work required to get up and running with the tool.

Another one of our strengths is that we leverage existing solutions where possible. When
developing a product that will be used continually we want to make sure that maintaining the
product is easy even without extensive knowledge regarding how it works. Thankfully when
using existing solutions they typically come with great documentation that make picking up the
project exponentially easier. Furthermore, by leveraging existing solutions we will be saving
ourselves a large amount of time since we will not be required to recreate a product that is
already available. Not to mention all the time that will be saved for our client when maintaining
the product since the original developers will still be pushing out updates when new issues are
discovered.

Additionally, our proposed solution will be highly modular which will allow multiple
developers to be working on it simultaneously without conflict. This saves both development
time, and makes it easier to add new functionality to the final design since modifying the
codebase in one area will be unlikely to break things in another. However, no solution is perfect
and ours does have a few shortcomings that are important to look out for.

One of the most worrying parts of our design is how we will get access to the results of
scanning the implants with different endpoint detection and response solutions. Unfortunately
the developers of most business oriented solutions are closed source, and keep their secrets
very close. Some of the more popular EDR solutions (such as FireEye) are so protective of their
code that they won’t even give out copies except to major corporations. Then, once we have the
EDR solutions we have to find a way to extract the data from them and post them back to a web
application. This will vary from solution to solution and on some it might not be possible to fully
access the results of a scan.

Another weakness that we will face is that since we opted for ease of use over
functionality we are limited on adding certain factors that other more sophisticated malware
would have. This is not something that is easy to get around since C# is not a very low level

9

language and therefore we cannot exploit functionality in windows that malware written in C++
or C would be able to achieve. However, our client does not necessarily need amazingly
advanced threats. Their use cases are targeted at being able to run commands on the victim’s
computer and receive results. While we will strive to remain stealthy, in the grand scheme of
things the implant will only be on the targets computer for a limited amount of time, and is
designed only to be an initial foothold.

The final weakness that we are worried about is that automating the testing of certain
functionality may not be entirely feasible. This is a result of the work being highly specialized in
nature and therefore not necessarily standardized. For instance testing if domain fronting is
working would require more work than actually implementing domain fronting itself since we
would have to have multiple machines to check whether or not our traffic is using a CDN to hide
itself. This is not necessarily a big deal since our product is still testable, we will just have to
manually look at the results.

10

Validation and Acceptance Test:

Domain Fronting using Amazon Cloudfront

● Proxy cannot see target host through SNI.

Macro to deliver payload malware through automated phishing

● Able to be sent through email, and activates payload when allowed access by user.

Scheduled task persistence via scheduled tasks while avoiding the use of schtasks.exe

● A scheduled task is created without schtasks.exe and leaves few if any obvious artifacts.

Endpoint Detection and Response, to detect unrecognized activity from ports on many
machines

● When a collection of machines is observed, and one starts communicating with malware
that we give it, the EDR will detect the activity and report it.

User authentication with multiple levels of access

● Admin and regular accounts can be created.
● Regular users cannot access admin-only actions.
● Admin users can access all actions.

Sockets for bi-directional communication between bots and controller

● A socket is established between the controller and each bot, which allows the bot’s
responses to be shown in real-time without the need to refresh the page.

Encrypted communication (HTTPS)

● A network sniffer watching the packets will not be able to see what commands and
responses are being sent between the controller and the bots.

Logging of actions taken by every user

● Every command sent from the controller is logged into a file that is visible by admins.
● Each logged action contains time sent, user’s name, user’s IP, bot’s name, bot’s IP, and

message.

Admin action page for actions such as user management

● An admin can access the page and actions while a non-admin cannot.
● Administrative actions, such as user creation, deletion, and escalation of privileges are

available.

Dockerize application to standardize deployment

11

● A docker image with a different version of a requirement can be created and ran. The
reason for one with different requirements is to show that after our dockerization, we
have the ability to update the requirements and create an image with those updates
completed.

● A docker image with the current requirements can be created.

Creation of help pages for common actions a user will take

● Every major feature or action will have a section or page in the help pages.
● A new user will be able to use the help pages to understand and run the project.

In-App Malware Builder that allows users to quickly test different payloads

● A user can write malware inside of the Webapp, which is then packaged and able to be
delivered.

12

Project Timeline

The timeline is split into two 15-week semesters (excluding Finals week, in which no work will
take place). The timeline is annotated via Gantt Charts that highlight the beginning and end of
each major task for the project.

Fig 1: Gantt Chart for Semester 1
Semester 1 will require extensive planning, meeting with the client, and setting up necessary
infrastructure and tools. We plan to conduct research on the technologies we will be using for
the project as well as proper procedures for successfully completing the project.

Fig 2: Gantt Chart for Semester 2
Semester 2 requires much less planning and time will be primarily spent on implementing
features for the project. Near the end of the semester we will test all of the code and write
documentation for the client.

13

Risks / Feasibility Assessment, Cost considerations:

The main challenges our group will be facing regarding this project will be ensuring we
can provide all the deliverables stated, while ensuring we have a safe and secure software for
our client to properly use. There’s a variety of risks that our group is aware of during this project.
First off we need to ensure that we have proper security for this project. As with all projects
making sure your code is safe, secure, and won’t fall into the wrong hands is a basic concept.
With ours specifically, due to the nature of our project being malware, we would want to
especially focus on the importance of security and user authentication. Another risk would be
the usability of the software and ensuring that the malware wouldn’t crash the client’s PC.

Although security is a big risk, we also have to consider the feasibility of the deliverable
we have promised. Each statement we made about the final deliverables of the project counts
as a risk if we fail to deliver or any of those deliverables aren’t realistic/feasible. It’s a big blunder
to be naive and over-promise on what we can actually provide at the end of these two
semesters. Time constraints are hard to calculate early on and as we progress through our
projects and run into obstacles, it’s easy to end up diminishing the final product quality as a
trade-off for completing the project on time.

In terms of Feasibility Assessment we were quite thorough with understanding the risks
of the deliverables we were promising. After meeting in person and discussing the deliverables
thoroughly we came to the conclusion that the majority were quite feasible. Although they would
take some time none were completely out of the scope of what we could accomplish. That being
said there were a few that stood out as significant amounts of work. Therefore they’d be the
highest risk factor in our project. The first one was getting proper results from our EDR. This
consisted of getting our endpoint detection and response to detect unrecognized activity from
ports on many machines. It would easily be the most challenging feature for our Implant Team
to implement as well as the most time consuming. On the other hand the most difficult risk for
the Webapp team would have to be the In-App Malware Builder that would allow users to
quickly test different payloads. The difficulty in this would be ensuring that the web app would be
able to compile malware with different variables with ease.

This project’s costs can be divided into two categories, time and money respectively.
First off all of these deliverables cost a certain amount of time, and the higher risk ones as
outlined earlier also have the highest time costs. Progressing on these deliverables and only
amounting to failure would cost heavily in terms of a failed timesink. Therefore getting a proper
response from our EDR and creating an In-App Malware Builder will have the greatest time
commitment and risk. The money costs of our project is much more minimal as we have no
hardware. The main costs will be AWS access which stands for Amazon Web Services. It is
simply cloud hosting for our server/application, but we will not be personally paying the cost.

14

Our client(company) will be paying for it. We will need approximately three credits which’ll cost
around $30 monthly for 8 VMs. We ourselves will not incur any personal costs regarding the
project.

Costs: Time and AWS access (amazon web services basically cloud hosting) but company will
pay for it
One for C2 server, one for Cloudfront CDN instance. Probably 3 credits $30 monthly for 8 VMs

Risk will be malware crashing clients
Not having proper security for a malware
Not meeting deliverables on time
Over-promising on deliverables

Hardest feasibility
Getting results from EDR (endpoint detection and response)
In-App malware builder, using web app to compile malware with variables

15

Standards:

One of the main concerns for this project is setting up standards to prevent us from leaking our
code to third parties. There are a few reasons why we wouldn’t want to leak code. If any
malware we write ends up being leaked it may be signitured by antivirus or used for purposes
which we do not condone. In addition the company will lose any competitive edge this code
gives them over their competitors in the marketspace if their competitors also have the code. To
ensure that we do not leak code we will be using only our private git repository and other
encrypted channels of communication to share the code.

This project will be used as a tool to reveal to organizations’ weaknesses in their cybersecurity.
One of the tenants of the IEEE code of ethics is “to hold paramount the safety, health, and welfare
of the public, to strive to comply with ethical design and sustainable development practices, and to
disclose promptly factors that might endanger the public or the environment;” Our product will
directly support the health, safety, and welfare of the organization by facilitating processes which
help to reveal an it’s security weaknesses and provide advice on how to become better and more
secure.

Test Plan:
Our project has many different components that all have a low level of coupling with each other.
Because of this any side effects of modifications to the codebase should be relatively easy to
discover. This combined with a relatively low number of branching paths in the codebase make
it easy to test the code manually. The intended users of this product will also be proficient
programers and will have the ability to do some of their own debugging or fall back on old
methods if out project fails. Given these circumstances we believe that manually performing
each of our validation and verifications tests throughout the process of development and prior to
giving the solution to the client will be sufficient to test the code well.

16

Conclusions:
The solution we propose will be an easy to use web application that allows users to easily
deploy malware to a number of client machines and determine how various EDR products will
react to a piece of malware. The solution will be modular allowing for the use of different
malware and EDR products. Our solution must implement stringent security measures to keep
the company’s client’s data safe including use of https and authentication. The solution will also
be able to log actions performed by it’s users and detect unauthorized access to malware to
provide accountability for the company’s client’s data. This product should greatly reduce the
amount of work required to perform a red team engagement.

17

